The best answers to the question “How do you set, clear, and toggle a single bit?” in the category Dev.

__QUESTION__:

How do you set, clear, and toggle a bit?

__ANSWER__:

Using the Standard C++ Library: `std::bitset<N>`

.

Or the Boost version: `boost::dynamic_bitset`

.

There is no need to roll your own:

```
#include <bitset>
#include <iostream>
int main()
{
std::bitset<5> x;
x[1] = 1;
x[2] = 0;
// Note x[0-4] valid
std::cout << x << std::endl;
}
```

```
[Alpha:] > ./a.out
00010
```

The Boost version allows a runtime sized bitset compared with a standard library compile-time sized bitset.

__ANSWER__:

# Setting a bit

Use the bitwise OR operator (`|`

) to set a bit.

```
number |= 1UL << n;
```

That will set the `n`

th bit of `number`

. `n`

should be zero, if you want to set the `1`

st bit and so on upto `n-1`

, if you want to set the `n`

th bit.

Use `1ULL`

if `number`

is wider than `unsigned long`

; promotion of `1UL << n`

doesn’t happen until after evaluating `1UL << n`

where it’s undefined behaviour to shift by more than the width of a `long`

. The same applies to all the rest of the examples.

# Clearing a bit

Use the bitwise AND operator (`&`

) to clear a bit.

```
number &= ~(1UL << n);
```

That will clear the `n`

th bit of `number`

. You must invert the bit string with the bitwise NOT operator (`~`

), then AND it.

# Toggling a bit

The XOR operator (`^`

) can be used to toggle a bit.

```
number ^= 1UL << n;
```

That will toggle the `n`

th bit of `number`

.

# Checking a bit

You didn’t ask for this, but I might as well add it.

To check a bit, shift the number n to the right, then bitwise AND it:

```
bit = (number >> n) & 1U;
```

That will put the value of the `n`

th bit of `number`

into the variable `bit`

.

# Changing the *n*th bit to *x*

Setting the `n`

th bit to either `1`

or `0`

can be achieved with the following on a 2’s complement C++ implementation:

```
number ^= (-x ^ number) & (1UL << n);
```

Bit `n`

will be set if `x`

is `1`

, and cleared if `x`

is `0`

. If `x`

has some other value, you get garbage. `x = !!x`

will booleanize it to 0 or 1.

To make this independent of 2’s complement negation behaviour (where `-1`

has all bits set, unlike on a 1’s complement or sign/magnitude C++ implementation), use unsigned negation.

```
number ^= (-(unsigned long)x ^ number) & (1UL << n);
```

or

```
unsigned long newbit = !!x; // Also booleanize to force 0 or 1
number ^= (-newbit ^ number) & (1UL << n);
```

It’s generally a good idea to use unsigned types for portable bit manipulation.

or

```
number = (number & ~(1UL << n)) | (x << n);
```

`(number & ~(1UL << n))`

will clear the `n`

th bit and `(x << n)`

will set the `n`

th bit to `x`

.

It’s also generally a good idea to not to copy/paste code in general and so many people use preprocessor macros (like the community wiki answer further down) or some sort of encapsulation.

__ANSWER__:

I use macros defined in a header file to handle bit set and clear:

```
/* a=target variable, b=bit number to act upon 0-n */
#define BIT_SET(a,b) ((a) |= (1ULL<<(b)))
#define BIT_CLEAR(a,b) ((a) &= ~(1ULL<<(b)))
#define BIT_FLIP(a,b) ((a) ^= (1ULL<<(b)))
#define BIT_CHECK(a,b) (!!((a) & (1ULL<<(b)))) // '!!' to make sure this returns 0 or 1
#define BITMASK_SET(x, mask) ((x) |= (mask))
#define BITMASK_CLEAR(x, mask) ((x) &= (~(mask)))
#define BITMASK_FLIP(x, mask) ((x) ^= (mask))
#define BITMASK_CHECK_ALL(x, mask) (!(~(x) & (mask)))
#define BITMASK_CHECK_ANY(x, mask) ((x) & (mask))
```

__ANSWER__:

The other option is to use bit fields:

```
struct bits {
unsigned int a:1;
unsigned int b:1;
unsigned int c:1;
};
struct bits mybits;
```

defines a 3-bit field (actually, it’s three 1-bit felds). Bit operations now become a bit (haha) simpler:

To set or clear a bit:

```
mybits.b = 1;
mybits.c = 0;
```

To toggle a bit:

```
mybits.a = !mybits.a;
mybits.b = ~mybits.b;
mybits.c ^= 1; /* all work */
```

Checking a bit:

```
if (mybits.c) //if mybits.c is non zero the next line below will execute
```

This only works with fixed-size bit fields. Otherwise you have to resort to the bit-twiddling techniques described in previous posts.